Удивительные животные. Рабочая программа по внеурочной деятельности. 7 класс 11 сентября 2017 | 0 комментариев
Удивительные животные. Рабочая программа по внеурочной деятельности. 7 класс
Рабочая программа по внеурочной деятельности «Удивительные животные» для 7 класса. Направление: общеинтеллектуальное  Оригинал программы взят с сайта...
Подробнее
Тема 2. Гиганты и карлики в мире животных 11 сентября 2017 | 0 комментариев
Тема 2. Гиганты и карлики в мире животных
Гиганты и карлики в мире животных (5 ч).    
Подробнее
Урок онлайн. Оплодотворение и эмбриональное развитие 30 июля 2017 | 0 комментариев
Урок онлайн. Оплодотворение и эмбриональное развитие
Онтогене́з — индивидуальное развитие организма, совокупность последовательных морфологических, физиологических и биохимических преобразований, претерпеваемых организмом...
Подробнее
Урок онлайн. Постэмбриональное развитие животных 29 июля 2017 | 0 комментариев
Урок онлайн. Постэмбриональное развитие животных
Постэмбриональное развитие начинается с рождения организма (для плацентарных и других живородящих организмов) или выхода из яйцевых оболочек. Различают два типа постэмбрионального развития...
Подробнее
Урок онлайн. Мочевыделительная система 14 мая 2017 | 0 комментариев
Урок онлайн. Мочевыделительная система
Мочевыделительная система. Презентанция к уроку в 8 классе. Мочевыдели́тельная систе́ма (мочева́я систе́ма) челове́ка — система органов, формирующих, накапливающих и...
Подробнее
Регистрация

Урок онлайн. Энергетический обмен

9843 просмотра
Голосов: 1
+1

Энергетический обмен - это распад органических соединений до конечных продуктов, идущий с выделением энергии; совокупность реакций, обеспечивающих клетку энергией, за счёт ферментного распада молекул органических веществ, синтезирующихся в клетке или попавших с пищей.

ЧИТАТЬ

Энергетический обмен в клетке


1. Какова химическая природа АТФ?
2. Какие химические связи называются макроэргическими?
3. В каких клетках АТФ больше всего?


Диссимиляция.

Универсальным источником энергии во всех клетках служит АТФ (аденозинтрифосфат). Это вещество синтезируется в результате реакции фосфорилирования, т. е. присоединения одного остатка фосфорной кислоты к молекуле АДФ (аденозиндифосфата):


АДФ + Н3Р04 + 40 кДж = АТФ + Н2О.


На эту реакцию затрачивается энергия, и теперь эта энергия находится в форме энергии химических связей АТФ. Вы уже знаете, что при распаде АТФ до АДФ клетка за счет макроэргической связи в молекуле АТФ получит приблизительно 40 кДж энергии.

Откуда же берется энергия для синтеза АТФ из АДФ? Она выделяется в процессе диссимиляции, т. е. в реакциях расщепления органических веществ в клетке. В зависимости от специфики организма и условий его обитания диссимиляция может проходить в два или три этапа.


Этапы энергетического обмена.

Большинство живых существ, обитающих на Земле, относятся к аэробам, т. е. используют в процессах обмена веществ кислород из окружающей среды.

У аэробов энергетический обмен происходит в три этапа:

подготовительный, бескислородный и кислородный.

В результате этого органические вещества распадаются до простейших неорганических соединений. У организмов, обитающих в бескислородной среде и не нуждающихся в кислороде, — анаэробов, а также у аэробов при недостатке кислорода ассимиляция происходит в два этапа: подготовительный и бескислородный. В двухэтапном варианте энергетического обмена энергии запасается гораздо меньше, чем в трехэтапном.

Рассмотрим подробнее три этапа энергетического обмена.

Первый этап называется подготовительным и заключается в распаде крупных органических молекул до более простых: полисахаридов — до моносахаридов, липидов — до глицерина и жирных кислот, белков — до аминокислот. Внутри клетки распад органических веществ происходит в лизосомах под действием целого ряда ферментов. В ходе этих реакций энергии выделяется мало, при этом она не запасается в виде АТФ, а рассеивается в виде тепла. Образующиеся в ходе подготовительного этапа соединения (моносахариды, жирные кислоты, аминокислоты и др.) могут использоваться клеткой в реакциях пластического обмена, а также для дальнейшего расщепления с целью получения энергии.

Второй этап энергетического обмена, называемый бескислородным, заключается в ферментативном расщеплении органических веществ, которые были получены в ходе подготовительного этапа. Кислород в реакциях этого этапа не участвует.

Так как наиболее доступным источником энергии в клетке является продукт распада полисахаридов — глюкоза, то второй этап мы рассмотрим на примере именно ее бескислородного расщепления — гликолиза.

Гликолиз — это многоступенчатый процесс бескислородного расщепления молекулы глюкозы, содержащей 6 атомов углерода (С6Н12О6), до двух молекул трехуглеродной пировиноградной кислоты, или ПВК (С3Н4О3).

Реакции гликолиза катализируются многими ферментами, и протекают они в цитоплазме клеток. В ходе гликолиза при расщеплении 1 М глюкозы выделяется 200 кДж энергии, но 60% ее рассеивается в виде тепла. Оставшихся 40% энергии оказывается достаточно для синтеза из двух молекул АДФ двух молекул АТФ. Получившаяся пировиноградная кислота в клетках животных, а также клетках многих грибов и микроорганизмов превращается в молочную кислоту (С3Н6О3):


С6Н12О6 + 2Н3Р04 + 2АДФ 2С3Н6О3 + 2АТФ + 2Н2О.


В большинстве растительных клеток, а также в клетках некоторых грибов (например, дрожжей) вместо гликолиза происходит спиртовое брожение-, молекула глюкозы в анаэробных условиях превращается в этиловый спирт и СО2:


С6Н12О6 + 2Н3Р04 + 2 АДФ —2С2Н5ОН + 2СО2 + 2АТФ + 2Н2О.


Существуют также и такие микроорганизмы, в клетках которых в анаэробных условиях образуются не молочная кислота и не этиловый спирт, а, например, уксусная кислота или ацетон и т. д. Однако во всех этих случаях распад одной молекулы глюкозы, так же как и в случае гликолиза, приводит к запасанию двух молекул АТФ.

В результате ферментативного бескислородного расщепления глюкоза распадается не до конечных продуктов (СО2 и Н2О), а до соединений, которые еще богаты энергией и, окисляясь далее, могут дать ее в больших количествах (молочная кислота, этиловый спирт и др.).

Поэтому в аэробных организмах после гликолиза (или спиртового брожения) следует завершающий этап энергетического обмена — полное кислородное расщепление, или клеточное дыхание. В процессе этого третьего этапа органические вещества, образовавшиеся в ходе второго этапа при бескислородном расщеплении и содержащие большие запасы химической энергии, окисляются до конечных продуктов СО2 и Н2О. Этот процесс, так же как и гликолиз, является многостадийным, но происходит не в цитоплазме, а в митохондриях. В результате клеточного дыхания при распаде двух молекул молочной кислоты синтезируются 36 молекул АТФ:


2С3Н6О3 + 6О2 + 36АДФ + 36Н3РО4 — 6СО2 + 42Н2О + З6АТФ.


Кроме того, нужно помнить, что две молекулы АТФ запасаются в ходе бескислородного расщепления каждой молекулы глюкозы.

Таким образом, суммарно энергетический обмен клетки в случае распада глюкозы можно представить следующим образом:


С6Н12О6 + 6О2 + 38АДФ + 38Н3Р04 | 6СО2 + 44Н2О + 38АТФ,


Для энергетического обмена, т. е. для получения энергии в виде АТФ, большинство организмов использует углеводы, но для этих целей может быть использовано окисление и липидов, и белков. Однако мономеры белков, т. е. аминокислоты, слишком нужны клетке для синтеза собственных белковых структур. Поэтому белки обычно представляют собой «неприкосновенный запас» клетки и редко расходуются для получения энергии.


Фосфорилирование. Подготовительный этап. Бескислородный этап (гликолиз, спиртовое брожение). Полное кислородное расщепление, или клеточное дыхание.


1. В клетках каких организмов происходит спиртовое брожение?
2. Откуда берется энергия для синтеза АТФ из АДФ?
3. Какие этапы выделяют в энергетическом обмене?
4. В чем отличия энергетического обмена у аэробов и анаэробов?

 

Каменский А. А., Криксунов Е. В., Пасечник В. В. Биология 10 класс